skip to main content


Search for: All records

Creators/Authors contains: "Simpson, Scott"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We have predicted acid dissociation constants (pKa), octanol–water partition coefficients (KOW), and DMPC lipid membrane–water partition coefficients (Klipid-w) of 150 different eight-carbon-containing poly-/perfluoroalkyl carboxylic acids (C8-PFCAs) utilizing the COnductor-like Screening MOdel for Realistic Solvents (COSMO-RS) theory. Different trends associated with functionalization, degree of fluorination, degree of saturation, degree of chlorination, and branching are discussed on the basis of the predicted values for the partition coefficients. In general, functionalization closest to the carboxylic headgroup had the greatest impact on the value of the predicted physicochemical properties. 
    more » « less
    Free, publicly-accessible full text available January 12, 2025
  2. Periodic Density Functional Theory calculations reveal the potential application of 10 imidazole based N-heterocyclic carbenes (NHCs) to behave as “molecular corks” for hydrogen storage on single atom alloys, comprised of Pd/Cu(111) or Pt/Cu(111). Calculations show that functionalizing the NHC with different electron withdrawing/donating functional groups results in different binding energies of the NHC with the alloy surfaces. The results are compared to DFT calculations of carbon monoxide bound to these alloys. The Huynh electronic parameter (HEP) is calculated for several simple imidazole NHCs to gauge σ-donor ability, while Se-NMR and P-NMR calculations of selenourea derivatives and carbene-phosphinidene adducts, respectively, have been utilized to gauge π-acidity of the NHCs. It is demonstrated that consideration of both σ and π donating/accepting ability must be considered when predicting the surface-adsorbate binding energy. It was found that electron withdrawing groups tend to weaken the NHC-surface interaction while electron donating substituents tend to strengthen the interaction. 
    more » « less
  3. Periodic Density Functional Theory calculations reveal the potential application of 10 imidazole based N-heterocyclic carbenes to behave as “molecular corks” for hydrogen storage on single atom alloys, comprised of Pd/Cu(111) or Pt/Cu(111). Calculations show that functionalizing the NHC with different electron withdrawing/donating functional groups results in different binding energies of the NHC with the alloy surfaces. The results are compared to DFT calculations of carbon monoxide bound to these alloys. The Huynh electronic parameter (is calculated for several simple imidazole NHCs to gauge σ-donor ability, while Se-NMR of and P-NMR calculations of selenourea derivatives and carbene-phosphinidene adducts, respectively, have been utilized to gauge π-acidity of the NHCs. It is demonstrated that consideration of both σ and π donating/accepting ability must be considered when predicting the surface-adsorbate binding energy. It was found that electron withdrawing groups tend to weaken the NHC-surface interaction while electron withdrawing substituents tend to strengthen the interaction. 
    more » « less
  4. Chromatographic retention times and mass spectrometral fragmentation of per- and polyfluoroalkyl substances (PFASs) standards were determined using the optimized parameters obtained for liquid chromatography with tandem high-resolution mass spectrometry (LC-HRMS) analysis. Characteristic fragment ions obtained at various collision energies (MS2 fragmentation) were used for structural elucidation to predict the identities of newly discovered (emerging) PFASs detected in environmental samples. Moreover, the COnductor-like Screening MOdel for Realistic Solvents (COSMO-RS) was used to calculate the octanol-water partition coefficients (Kow) and mean isotropic polarizabilities of known PFASs, and the values were plotted against their chromatographic retention factors (k) to obtain a multivariable regression model that can be used to predict k values of unknown PFASs. Retention factor values of different structural isomers of the unknown PFASs were calculated and compared to the experimental k. For all the unknown PFASs, the predicted k value for the isomer that matches the corresponding MS2 fragmentation was found to be within 5% of the experimentally measured k value. This study demonstrates the applicability of a simple approach that combines the use of computationally-derived log Kow and polarizabilities, experimentally-determined k values, together with observed MS2 fragmentation patterns, in assigning the structures of emerging PFASs at environmentally relevant conditions when no reference standards are available. 
    more » « less
  5. null (Ed.)